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SUMMARY

This primer provides documentation for using MSC NASTRAN in analyzing
rotating flexible blades. The analysis of these blades includes geometrically

nonlinear (large displacement) analysis under centrifugal 1oadlng, and fre-

quency and mode shape (normal modes) determination. The geometrically non-

linear analysis using NASTRAN Solution sequence 64 is discussed along with the

determination of frequencies and mode shapes using Solution Sequence 63. A

sample problem with the complete NASTRAN input data is included. Items unique

to rotating blade analyses, such as setting angle and centrifugal softening

effects are emphasized.

1.0 INTRODUCTION

The purpose of this primer is to document the use of MSC NASTRAN in ana-

lyzing rotating flexible blades. The analysis of rotating flexible blades such

as compressor and turboprop blades, often requlres complex procedures including

geometrically nonlinear (large displacement) analysls and frequency and mode
shape determination. The objective in performing such analyses IncludeS_:the

prediction of steady state deflections and stresses under centrifugal forces,

the generation of data for constructing Campbell diagrams (plots of frequency

versus rotational speed), and thie provision of modal data for use in flutter

calculations. In performing these analyses, and in modeling the complex geom-

etries and material properties of the blades (fig. l), finite element (F.E.)

computer programs typically are used. NASTRAN is particularly well-sulted

because of its ability to compute steady-state displacements from its geometri-

cally nonlinear analysis capabilities, and then, to use those results for a

subsequent normal modes analyses.

This primer also can be used to bridge the gap between the theoretical

modeling tactics presented in (ref. l) for creating the model, and the prac-

tlcal application of NASTRAN for large displacement or normal modes analysis.
Reference l provides a complete discussion of blade modeling strategies and

documents the capabilities and limitations of various NASTRAN elements. The
performance of a broad range of mesh configurations and element types also are

evaluated for different blade related parameters such as camber, twist, sweep,

and rotational speed.

The computation of steady-state displacements, frequencies, and modes

shapes of flexible rotating blades requires that two NASTRAN Solution sequences



be run. First, a large displacement analysis is run using NASTRANSolution
Sequence 64. This solution sequence performs !arge displacement analysis on
the rotating blade, computes steady-state displacements and stresses (due to
the rotational effects), and then stores the blade's final stlffness and mass
matrix in a database. Experience has shown(ref. 2) that a large displacement
analysis is required because the blades are relatively flexlble and normally
deflect considerably under the centrifugal forces (fig. 2).

Following the large displacement analysis, the frequencies and modeshapes
are computedusing Solution Sequence63. (A typical plot demonstrating the
variation in natural frequencies with rotatlonal speed is shown in fig. 3.)
This solution sequence computes the modal parameters from the flnal mass and

stiffness matrices which were computed during the Solution 64 run. The struc-

tural property matrices that correspond to the blade in its deformed position

must be used so that the effects of centrifugal stiffening, and other elements

which will be discussed, are included in the normal modes analysis.

2.0 DESCRIPTION OF SAMPLE PROBLEM

The sample problem in figure 4 Is provided in order to demonstrate the

procedures required for large displacement and normal modes analyses. All of

the requirements for these analyses are exhibited in this sample problem even

though this problem does not have the mesh complexity required of typical flex-

Ible blades. The mesh used in this sample problem is for demonstration pur-

poses and is over simplified compared to typical analyses. Although there are

no aerodynamic loads Included in this problem, they can be included, and would

be combined with the centrifugal loads for computing the steady-state
displacements.

The sample problem consists of a rotating, swept back, flat plate. The

plate is modeled with three plate elements (CQUAD4) connected by 8 grid points.

The grid points are defined in a local rectangular coordinate system, which is

rotated 30 ° from the axis of rotation in the X/Y plane (see section 6.0 for
a discussion on the CORD2R card). It should be noted that the selection of
the orientation of axes needs to be consistent with the directions that are

specified for the centrifugal softening terms and the rotational speed
(section 3.0).

3.0 GEOMETRICALLY NONLINEAR ANALYSiS/MSC NASTRAN SOLUTION 64

This section provides a discussion regarding the construction of the

Solution 64 input data deck. The sample data deck is comprised of four compo-

nents; the CRAY Job Control Language_ the NASTRAN Executive, the Case Control,

and Bulk Data, and is included in appendix A. The following sections discuss

step by step the data cards included in the appendix.

3.1 CRAY Job Control Language

The CRAY Job Control Language for submitting Jobs to the CRAY (at NASA

Lewis Research Center)and running NASTRAN is given at the beginnlng of the
data deck. The amount of time and memory indicated on the "JOB" card is based
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on the numberof degrees of freedom used for the model and the number of itera-

tions (section 3.3) specified for the nonlinear analysis. Faster turnaround

time on the computer is accomplished when these allocations are minimized.

On the "NASTRAN" card (see ref. 3 for a complete description), a temporary

database named "BLADE" is specified. This database is used for storing the

mass and stiffness matrices for subsequent use in the Solution 63 normal modes

analysis.

3.2 Solution 64 Executive

Solution 64 is well suited to the large steady-sitate displacement analysis
of rotating structures except for the fact that coriolis forces and centrifugal

softening terms (see appendix C for a derivation of centrifugal softening) are

not automatically included. Since the coriolis forces are velocity related,

they do not have any influence on the lalrgedispi!scement anaIMsis and do not
need to be accounted for. Furthermore, from previous Studi_es"_}it_hasibeen

determined that coriolls forces have neglilglbleeffects on thln, flexible blade

frequencies (ref. 4), so they normally do not need to be included in the Solu-

tion 63 analysis. However, the centrifugal softening terms do need to be

included in the analysis and must be added via DMAP (Direct Matrix)

programming.

The centrifugal softening terms (-w2M) are added to the global stiffness

matrix for all grid points for the translational degrees of freedom in the
direction of the two axes perpendlc_lar to the axis of rotation. The softening

terms are input into the Solution 64 analysis using the NASTRAN DM!AP included

with the sample problem given in appendix A. In DMAP Alter 77, the -w2

coefficient first is computed from the rotational speed specified on the RPM
parameter card which is provided in the bulk data deck (see section 3.4).
This coefficient then is added into the matrix "KIOM". All terms in this

matrix are zero except for the diagonal elements corresponding to the two

translational degrees of freedom perpendicular to _the axis of rotation. These

elements are set equal to -w2. The matrix "Kl" which specifies the two per-

pendicular axes is defined using DMI cards in the bulk data deck(sectlon 3.4).
The KIOM matrix is multiplied by the global mass matrix to form the -w2M

softening matrix and then the resulting matrix, KSOFT, Is stored in a database.
In alter 18B KSOFT is retrieved from the database ("DBFETCH..."), and is

added to the global stiffness matrix (KJJ) in every iteration that takes place

in the large displacement analysis.

3.3 Solution 64 Case Control

The cards in the CASE CONTROL Deck are used to specify the problem titles,

the type of printed output, and the number of iterations that are to be carried

out in the large displacement analysis.

For the sample problem the applied forces at all of the grid points

(OLOAD=ALL), and the resulting displacements (DISP=ALL) and reactions

(SPCFO=ALL), are printed in the last three iterations. It is recommended that
displacements and reactions be printed in at least the last few of iterations

so that convergence can be monitored. It may be desirable to print displace-
ments in the first iteration so that the nonlinearity of the blade's response

3



can be assessed. Acceptable convergence is achieved when both the displacement
changes between iterations and the force unbalance between the applied centri-
fugal forces and the internal element forces are small. The force unbalance
at each of the unconstrained grid points is printed along with the reactions
at the constrained points by using the command"SPCFO=ALL".

There are eight iterations, or "subcases," specified for this sample
problem. In the first subcase a linear analysis is performed. In the second
subcase, the displacements from the first subcase are used to form a differen-
tial stiffness matrix which is then used to computea new set of displacements.
In subsequent subcases the differential stiffness matrix is updated using the
resultant displacements and a new set of displacements is computed. (Details
of the theory underlying the iteratlve procedure and results for a flexible
turboprop blade are provided in (refs. 2 and 5).)

Whenactual blades having large numbersof degrees of freedom are analyzed
the cost of running a large number of iterations can be significant. To mini-

mize the CPU time and cost, the number of iterations should be kept to a mini-

mum. The best way to optimize the number of iterations is to specify a minimum
number of iterations, and then If the solution has not converged, use NASTRAN

"restart" (ref. 6) to resume the analysis.

3.4 Solution 64 Bulk Data Deck

The prlmary function of the bulk data deck is to describe the blade geom-
etry, boundary conditions, material properties, and loads. Details of blade

modeling techniques and the bulk data cards required for the model description

are presented in (ref. ]), and in the NASTRAN User's Manual (ref. 6). In addi-

tion to describing the model, the bulk data deck is used to specify the rota-
tional speed (RFORCE and PARAM RPM), and the matrix "Kl" dlscussed in
section 3.2.

NASTRAN automatically computes a centrifugal force field whenever an

"RFORCE" card is used to specify a rotational speed. The centrifugal force

field is computed by using the blade's geometrical and mass properties defined
in the bulk data deck, and the rotatlona] speed specified on the "RFORCE" card.

The rotational speed is also included on a parameter card, "PARAM RPM." This

card is used by the DMAP Alters for computing the value -w 2 for the centri-

fugal softening terms.

The matrix KI is set up using DMI Bulk Data cards. In the first DMI

card, the matrix is defined as being symmetric and of size 6 by 6. The size of

this matrix is always 6 by 6 corresponding to the number of degrees of freedom
at a grid point. In the next two DMI cards the elements of the matrlx are

defined as zero except for the diagonal terms corresponding to the two trans-

lational directions perpendicular to the axis of rotation which are set equal

to l.O. For this problem the Y and Z axis are the axes that are perpen-
dicular to the axis of rotation. In alter 77 (section 3.2) the Kl matrix

will be expanded so that the softening terms are applied at every grid point
in the model.

Several issues which concern the blade model and are addressed in (refs. l
and 7), are discussed below as they are relevant to the large displacement ana-
lysis of flexible blades. The first issue concerns the method of formulatlon



for the element mass matrices. Most of the elements available in NASTRAN per-
mtt the user to utilize a lumped or consistent mass matrix, but since the form-
ulatton for the centrifugal softening terms, and the centrifugal force field,
Is based on a lumped mass representation, a lumped mass matrix should also be
used for the elements. Furthermore, no clear advantages have been found for
utilizing a consistent mass formulation. A lumped mass matrix Is computed by
default tn NASTRAN.

The next issue regards the lack of stiffness In the In-plane, normal rota-
tion for plate and shell elements. This condition can present problems when
adjacent elements lie tn the same plane (coplanar). Since the elements have
zero computed stiffness in the normal rotation, and the elements are coplanar,
the accumulated rotational stiffness may end up being very close to zero. When
this occurs the stiffness matrix becomes singular and the analysis fails. To
circumvent thts problem, these "small" rotational stlffnesses can be con-
strained with SPC's. This solution is sensible since the normal rotational
stiffness usually ts relatively stiff, thus It ls reasonable to fully con-
strain the rotation. For nonlinear problems this approach is not feasible
because the large displacements may deflect the elements such that elements
that start out noncoplanar become coplanar. When this happens, singularities
that did not exist In earlier iterations arise, and the solution fails In the
resultant iteration. A feature in NASTRAN for overcoming thls problem Is the
K6ROT parameter. Thls parameter adds artificial rotational stiffness at the
element level so that even if elements are coplanar, the global stiffness

matrix wlll not have any singularities. The effect of adding this rotational

stiffness produces results similar to when the rotation is fully constrained

wlth SPC's (see ref. l for details of comparison). The advantage of using the

K6ROT parameter over using SPC's Is that It Is difficult to determine before-
hand where SPC constraints are required.

The final issue concerns the constraint at the base of the blade model.

For most blade analyses performed thus far, the base of the blade has been

fully constrained. In reference 7, It was shown that base flexibility can have
a significant effect on steady-state displacements, frequencies, and mode_::

shapes. Therefore, whenever there is information on the blade's base support

flexibility, It should be incorporated Into the blade model°

4.0 NORMAL MODES ANALYSIS/MSC NASTRAN SOLUTION 63

The NASTRAN Solution 63 data deck for the normal modes analysis Is given

in appendix B. Thls data deck uses the identical model description that was
used In the Solution 64 deck. The Solution 63 deck was created by duplicating

all of data cards used in the Solution 64 deck for defining the blade model,

removing the cards associated with the large displacement analysis, and then

adding the necessary cards for the Solution 63 normal modes analysis.

4.1 CRAY Job Control Language

The amount of time and memory specified for the Solution 63 run Is based
on the number of degrees of freedom used in the analysis and the number of
modes requested. As wlth the Solution 64 analysis, faster turnaround time on



the computer will be accomplished when the time and memory allocations are min-
imized. It also should be noted that the "NASTRAN" command accesses the same

database ("BLADE") in the Solution 63 run as in the Solution 64 run.

4.2 Solution 63 Executive

The primary function of the Executive Control Deck is to request that
Solution Sequence 63 be run (SOL 63).

4.3 Solution 63 Case Control

The Case Control deck specifies that the mass and stiffness matrices are

to be retrieved off of the database (SEKR and SEMR), and that the method to be
used for the elgensolutlon is on "EIGR" card lO in the bulk data deck

(METHOD=IO). The "DISP=ALL" card specifies that the values of the computed
mode shapes at all of the grid polnts are to be printed out.

4.4 Solution 63 Bulk Data Deck

The model description provided in the Solution 63 bulk data deck is not

used for creating a new mass and stiffness matrix since these matrices are

obtained from the database. These cards are required in the Data Deck for

bookkeeping purposes.

The "EIGR" Card is used to specify the method for extracting the blade's

frequencies and mode shapes. For this sample problem the inverse power method
is chosen. This method of solution is recommended for flexible blades with a

large number of degrees of freedom, and when there is interest only in the

first few modes. For this blade, the frequency range of Interest is specified
to be between 50 and 3000 Hz with an estimate that there will be ? modes in

this range. The analyst must use care with these specifications because,_If

the range is made too large, there may be more modes in the range than wa_

estimated and some of the modes may be missed, or the modes that are computed
may be computed inaccurately. Conversely, if the range is made too small some

of the modes may be outside of the range and not computed at all. In

section 3.1.2 of the NASTRAN USER'S MANUAL (ref. 6) a description is given of

the elgensolution summary which is printed along with the NASTRAN output when

the inverse power method is used. This summary provides the analyst with
information concerning the adequacy of the elgensolutlon and the reason for

solution termination. The third reason for termination listed in section 3.1.2

(indicated by "All elgenvalues found in the frequency range specified") is most
desired as it indicates that the solution was completed correctly. If this

is not the reason for termination, the frequency range or the estimated number

of modes in the range specified on the EIGR card likely will need to be
adjusted.

5.0 NONROTATING BLADE NORMAL MODES ANALYSIS

The data deck for the Solution 63 analysis can be used when it is neces-

sary to obtain the nonrotating blade frequencies and mode shapes (NASTRAN

Solution Sequence 3 can also be used). When utilizing nonrotatlng blades in

6



the normal modes analysis SELA = I and the SEMA = 1 in the Solution 63 case
control deck need to be changed to SELA = all and SEMA = all. When these

changes are made, NASTRAN computes a new mass and stiffness matrix instead of

pulling the mass and stiffness matrices off of the database which is done when
SELA and SEMA are set to I. Thus, the rotational effects computed in the

large displacement analysis are not included in the property matrices since

they are computed from data supplied for the nonrotatlng blade.

6.0 CHANGES IN ROTATIONAL SPEED

To obtain the steady state displacements, frequencies, and modes shapes

when the blade is spinning at a new speed, both the large displacement and

normal modes analyses must be rerun. The large displacement analysis (Solu-

tion 64) needs to be rerun because the steady-state position of the blade

changes with rotational speed. Furthermore, updated mass and stiffness
matrices, which reflect the effects of the current rotational speed, need to

be transferred to the normal modes analysis performed in Solution 63. The

effect of rotational speed on blade frequencies for a typical blade was shown

in figure 3.

In the Solution 64 run the rotational speed is altered by changing the

speed on the RFORCE and PARAM RPM cards. In addition to changing the blade's

speed, the blade's angle of attack normally has to be adjusted when the blade

is operating at a new rotational speed. Once the correct angle of attack is

determined, either the axis that the blade is rotating about must be changed
or the blade itself must be rotated. Due to the way the centrifugal softening

terms are applied it is simpler to rotate the blade than to change the axis of

rotation. To implement a change in the angle of attack, the entire blade can

be rotated by defining the blade's geometry in a new coordinate system. This

method of rotating the blade is convenient because the coordinates of the blade
on the "GRID" cards do not have to be changed. Instead, the coordinate system

in which the blade is described is rotated. Referring to figure 5, the blade

cross section shown is rotated an angle _ by prescribing that the blades
coordinates are in reference to the X', Y', Z' system instead of from the

original X, Y, Z system. The X', Y', Z' system is defined by using the
"CORD2R" card which is described in section 7.3.2 of the NASTRAN Prlmer

(ref. 8). The blade's grid points are designated to be in the primed coordi-

nate system by changing the identification number of the coordinate system

using a GRDSET bulk data card. It should be noted that all other items, such

as the blade's rotational speed, continue to be in reference to the original,

basic coordinate system.

7.0 COMBINED SOLUTION 64/SOLUTION 63 ANALYSIS

A combined large displacement, frequency, and mode shape analysis can be

performed in the Solution 64 Sequence. This analysis is completed by adding

NASTRAN DMAP Alters to the Solution 64 data deck (see appendix D). The func-
tion of these DMAP alters is to access the elgenvalue extraction routines that

solve for the frequencies and mode shapes. The alters are setup so that the

final mass and stiffness matrices generated in the large displacement analysis

are used. The advantages of utlllzlng the combined analysis capability are
reduced CPU, faster turnaround time, and reduced quantities of output listings.

In general, the CPU tlme can be reduced by one half.



APPENDIXA

MSC/NASTRANSOLUTION64 INPUTDATA

$ CRAYJOBCONTROLLANGUAGE(JCL)

JOB,JN=BLADE64,T=lOO,MFL=450000.

ACCOUNT,AC=XXXXX, APW= XXXXX.

NASTRAN,ID=XXXXX,DBASE=BLADE,FL=4OOOOO,STORE=TPOOL.
/EOF

$ NASTRAN EXECUTIVE CONTROL DECK

PARAMR

PARAMR

PARAMR

MATMOD

ADD

MPYAD

DBSTORE

$

$ DMAP

$

ID BLADE,BLADE
APP DISP

SOL 64
TIME lO0

$

$ DMAP ALTER FOR COMPUTING CENTRIFUGAL SOFTENING MATRIX

$
ALTER 77

//MPY/V,N,OMEGA/V,Y,RPM/.1047198 $

//MPY/V,N,OMEGASQ/OMEGA/OMEGA $

//COMPLEX//OMEGASQ/O.O/V,N,ALPHAC $

Kl ,,,,,/KIBOB,/5/LUSET $

KlBOB,/Kl OM/ALPHAC $

KlOM,MJJ,/KSOFT/O/-I//1/6 $

KSOFT,//MODEL/O/ $

ALTER FOR ADDING SOFTENING MATRIX TO STIFFNESS MATRIX

ALTER 188 $

DBFETCH /HKSOFT,,,,/MODEL/O/I $

ADD KJJ,HKSOFT/KTOT// $

EQUIV KTOT,KJJ/ALWAYS $
ENDALTER

CEND

7



$ NASTRAN CASE CONTROL DECK

TITLE = SWEPT, CANTILEVER BLADE
SUBTITLE = LARGE DISPLACEMENT ANALYSIS AT 8350 RPM

LOAD = 50

SUBCASE l

LABEL = LINEAR ANALYSIS

SUBCASE 2

LABEL = DIFFERENTIAL STIFFNESS

SUBCASE 3

LABEL = SUBCASE 3

SUBCASE 4

LABEL = SUBCASE 4
SUBCASE 5

LABEL = SUBCASE 5

SUBCASE 6

LABEL = SUBCASE 6

DISP = ALL
OLOAD = ALL

SPCFO = ALL

SUBCASE 7

LABEL = SUBCASE 8

DISP = ALL

OLOAD = ALL

SPCFO = ALL

SUBCASE 8

LABEL = SUBCASE 10

DISP = ALL

OLOAD = ALL

SPCFO = ALL

BEGIN BULK

$ NASTRAN BULK DATA DECK

CORD2R 33 0 0.0

l.O +2

+2 -.866 0.50 0.0

0.0 0.0 0.0 0.0

CQUAD4 l 10 I 2 4 3

CQUAD4 2 lO 3 4 6 5

CQUAD4 3 I0 5 6 8 7

DMI KI 0 6 I

DMI K1 2 2 I.0

DMI K1 3 3 1.0

, 6

9



GRID l 33 -1.6 0.0 5.9

GRID 2 33 0.4 0.0 6.1

GRID 3 33 -1.4 0.0 3.9

GRID 4 33 0.6 0.0 4.1

GRID 5 33 -1.2 0.0 1.9

GRID 6 33 0.8 0.0 2.1

GRID 7 33 -l.O 0.0 -.l
GRID B 33 l.O 0.0 .I

PSHELL lO lO
MATI lO 1.0+7

PARAM MAXRATI02.0+15
PARAM RPM 8350.

PARAM KGROT l.O

RFORCE 50 0

ENDDATA

/EOF

O.lO lO

0.30

139.2

2.6-4

l.O 0°0

123456

123456

0°0

10



APPENDIXB

MSC/NASTRANSOLUTION63 INPUTDATA

$ CRAY JOB CONTROL LANGUAGE (3CL)

30B,JN=BLADE64,T=lOO,MFL=450000.

ACCOUNT,AC=XXXXX, APW= XXXXX.
NASTRAN,ID=XXXXX,DBASE=BLADE,ACCESS=TPOOL.
/EOF

$ NASTRAN EXECUTIVE CONTROL DECK

ID BLADE,BLADE
APP DISP

SOL 63

TIME lO0

CEND

$ NASTRAN CASE CONTROL DECK

TITLE = SWEPT, CANTILEVER BLADE

SUBTITLE = FREQUENCY ANALYSIS AT 8350 RPM
SET l = 0
SEKR = l

SEMR = I

METHOD = lO

DISP = ALL
BEGIN BULK

$ NASTRAN BULK DATA DECK

CORD2R 33 0 0.0

l.O +2
+2 -.866 0.50 0.0

0.0 0.0 0.0 0.0

CQUAD4 ] lO l 2 4 3

CQUAD4 2 lO 3 4 6 5

CQUAD4 3 I0 5 6 B 7

DMI K1 0 6 1

DMI KI 2 2 1.0

OM! KI 3 3 1.0

6
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APPENDIX C

CENTRIFUGAL SOFTENING

The equation of motion for a lumped mass, in a rotating reference frame

can be written uping (ref 9):

M {u} + 2 {_} x {u} + {(Z}x {(Z}x [{R} + {u}] : {F} (I)

In this equation, M is the mass, {_}, {0}, and {u} are the acceleration,

veloclty, and displacement vectors of the mass, {_} is the rotation vector,

{R} + {u} is the position vector from the mass to the rotational axis, and

{F} is the vector of applied forces.

If the rotation is about the Z axis then {_} = Oi + OJ + _k and

equation (1) can be written in matrix form as:

I01)M "_y

0 "u"z

°°i)°y
kx-_2M 0

+L O0 ky-_2Mo
o]ux0 Uy

k uZ

Px ÷ Q2MRx

= Py + O2MRy

Pz

(2)

The third term on the left hand side of this equation contains the centrlm

fugal softening terms (-_2m) in addition to the elastic stiffness terms. From

equation (1) it can be seen that the softening terms arise from the displace-

ment u of the mass about it's initial position. Since {u} normally is much

smaller than {R}, it is tempting to neglect the softening terms, however,

can be large, thus, for stability, large displacement, and normal modes analyses

the softening terms are significant and cannot be neglected.

An alternate way of deriving the softening terms_ is to consider the

spring mass system subject to a centrifugal force _2RM as shown in flgOire 6.

The equilibrium equation for this system is written:

ku = _2RM (3)

where

stltutlng

IZ the distance from the mass to the stationary coordinate. Sub-

R = R + u into the previous equation, the following Is obtained:

ku = _2(R + u)M

(4)

(k - _2M)u = _2RM

This approach produces the same softening terms found previously In

equation (2). From this formulation it is clear that the softening terms come

from the fact that the centrifugal force is a function of both the initial

position R and the displacement u. Furthermore, the part that Is a function

of u can be expressed as an increase in the centrifugal force or as a nega-

tive stiffness or softening term.

When performing the large displacement analysis, NASTRAN will automati-

cally consider the increment in load by updating the centrifugal loads based

13



on the deformed position of the blade (PARAM,SKPLOAD). Although this approach
will work for the large displacement analysis, the softening terms must still
be inserted into the stiffness matrix when a subsequent normal modes analysis
is to be performed. (In the sample problem both load updating and softening
terms are used.) The softening terms must be included in the stiffness matrix
that Is transferred from the Solution 64 to the Solution 63 analysis, or the
frequencies will be computed incorrectly.

To demonstrate the effect that the softening terms have on the natural

frequencies, a steel plate (6" by 2" by O.lO") was analyzed (fig. 7). In this

figure two sets of frequencies are plotted; one for the plate lying In the

plane of rotation, and the other lying perpendicular to the plane of rotation.

For the latter case the softening terms have a significant effect on the

plate's first bending mode frequency. Thls Is understandable since both the
softening terms and the bending mode motion are in the plane of rotation. For

actual blades, which have more complexity to their geometries than the steel

plate, the centrifugal softening wlll have some influence on all of the modes
and wlll therefore need to be included in all of the normal modes analyses.

14



APPENDIXD

COMBINEDSOLUTION64/63 DATADECK

The following cards are added to the NASTRANdata deck for the combined
analysis.

Executive Control Deck

ALTER77 $
PARAM //SUB/V,N,MSUBS/V,Y,NSUBS/I $

ALTER 311
PARAM

COND

$
//EQ/V,N,JEIG/MSUBS/NSKIP $

LBLI3,JEIG $

ALTER 315

DBFETCH

DBFETCH

MATMOD

EQUIV
COND

MCE2

LABEL

COND

SCEI

JUMP

LABEL

EQUIV
LABEL

DPD

$
/DYNAMICS,MJJ,GM,,/MODEL/O/O $

/GKAA,,,,/SOLID/O/I $
MJJ,,,,,/NVEC,/12/S,N,NULLS/2 $

MJJ,MNX/MPCFI $

LBLB3,MPCFI $

GUSET,GM,MJJ,,,/MNX,,, $

LBLB3 $

LBLBI,NULLS $

GUSET,MNX,,,/MXBOB,,,,, $

LBLB2 $

LBLBI $

MNX,MXBOB/ALWAYS $
LBLB2 $

DYNAMICS,GPLS,SILS,USET,SLT,/GPLD,SILD,USETD,,,,,,,EED,

EQDYN/LUSET/V,N,LUSETD/V,N,NOTFL/V,N,NODLT/V,N,NOPSDL/

V,N,NOFRL/V,N,NONLFT/V,N,NOTRL/V,N,NOEED/C,N,O/V,N,NOUE $

READ GKAA,MXBOB,,,EED,GUSET,CASECC/LAMA,VECTOR,

MI,OE!GS/MODES/S,N,NEIGS/NSUBS $
OFP LAMA°OEIGS// $
COND FIN,NEIGS $
SDRI GUSET,,VECTOR,,,,GM,,,,/UGV,,QG/I/REIG $
SDR2 CASECC,FCSTMS,FMPT,FD!T,FEQEXINS,,FETT,,FBGPDT,LAMA,QG,
UGV,EST,XYCDB/OPGI,OQGI,OUGVI,OESI,OEF2,PUGV/REIGEN/-I $
OFP OUGVI,OPGI,OQGI,OEF2,0ESl// $
LABEL FIN $
PRTPARM ////l $
ENDALTER

Case Control Deck

An additional subcase is added to the subcases required for the normal

application of solution 64. This subcase contains the METHOD ID of the EIGR
card in the BULK DATA deck.

SUBCASE XX $ LAST SUBCASE
LABEL : EIGENVALUE EXTRACTION
METHOD = 22
DISP : ALL

15



Bulk Data Deck

In addition tothe EIGR card a new parameter NSUBS must be defined as the
total number of subcases In the CASE CONTROL deck.

PARAM,NSUBS,X $$ TOTAL NUMBER OF SUBCASES
EIGR 22 ..................

16
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